Spatio-temporal Seed Development Analysis Provide Insight into Primary Dormancy Induction and Evolution of the *Lepidium DELAY OF GERMINATION 1* Genes

Kai Graeber^{1,2}, Antje Voegele^{1,2}, Annette Büttner-Mainik¹, Katja Sperber³, Klaus Mummenhoff³, Gerhard Leubner-Metzger^{1,2}

 ¹ School of Biological Sciences, Plant Molecular Science and Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom; 'The Seed Biology Place', www.seedbiology.eu
 ² Botany / Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
 ³ Fachbereich Biologie, Universität Osnabrück, Botanik, Barbarastr. 11, D-49069 Osnabrück, Germany

Supplemental Data

Plant Physiology 2013

Supplemental Figure S1

Lepidium oxytrichum Scales: 2 mm (left), 1 mm (right)

Lepidium papillosum Scales: 5 mm (left), 0.5 mm (right)

Supplemental Figure S1. Comparison of *Lepidium oxytrichum* and *Lepidium papillosum* trichomes. The fruit axis of *L. oxytrichum* is hairy with acicular hairs, whereas that of *L. papillosum* is papillose, with white, clavate or turgig, vescicular hairs (Hewson 1981).

Hewson H (1981) The genus Lepidium L. (Brassicaceae) in Australia. Brunonia 4: 217-308

Supplemental Figure S2

```
1 Lepidium oxytrichum [211] ITS (Loxy-ITS)
2 Lepidium papillosum [719] ITS (Lepa-ITS)
3 Lepidium accession "Mummenhoff 2415" used in this work (Lepa-?)
LOXY-ITS AUTCGATACC TGTTCAAAAC AGAACGACCC GCGAACCAAC TATCATCACT
Lepa-ITS AUTCGATACC TGTTCAAAAC AGAACGACCC GCGAACCAAC TATCATCACT
          tcgatacc tgtccaaaac agaacgaccc gcgaaccaac tatcatcact
Lepa-?
LOXY-ITS TGCGGTGGGC CGGTTTCCTA GCAGATCCCG TGTCCTCCGA ATCCTTGGTT
Lepa-ITS TGCGGTGGGC CGGTTTCCTA GCAGATCCCG TGTCCTCCGA ATCCTTGGTT
Lepa-?
       tgcggtgggc cggtttccta gcagatcccg tgtcctccga atccttggtt
LOXY-ITS TCGCGTAC-G TTCCGAACGG GAGATCTCTC CCGGACCGGT CCTGCGCGTA
Lepa-ITS TCGCGTACCG TTCCGAACGG GAGATCTCTC CCGGACCGGT CCTGCGCGTA
Lepa-?
       tcgcgtac<u>c</u>g ttccgaacgg gagatctctc ccggaccggt cctgcGCGTA
Loxy-ITS GCTGATGGAT ATCACAACAA CACGGCACGA AAAGTGTCAA GGAACATGCA
Lepa-ITS GCTGATGGAT ATCACAACAA CACGGCACGA AAAGTGTCAA GGAACATGCA
Lepa-?
        gCTGATGGAT ATCACAACAA CACGGCACGA AAAGTGTCAA GGAACATGCA
Loxy-ITS ACCGAACGGC [CA-C] GTTCGC CTTCCCGGAG ACGGTGCGAG -CGCGA [-ATT]
Lepa-ITS ACCGAACGGC [CA-C] GTTCGC CTTCCCGGAG ACGGTGCGAG -CGCGA [-AT-]
Lepa-? ACCGAACGGC [CAGC] GTTCGC CTTCCCGGAG ACGGTGCGAG -CGCGA [-AT-]
Loxy-ITS GCTGTGCTGC GATCTAAAGT CTATCGTCGT CCCACTCA [CG AAATTTT-G] C
Lepa-ITS GCTGTGCTGC GATCTAAAGT CTATCGTCGT CCCACTCA [CG AAATTTT-G] C
Lepa-? GCTGTGCTGC GATCTAAAGT CTATCGTCGT CCCACTCA [CG AAATTTT-G] C
Loxy-ITS GAGTGCGGGGG CGGAA-CTGG TCTCCCGTGT GTTACCGCAC GC [-GG] TTGGC
Lepa-ITS GAGTGCGGGA CGGAAGCTGG TCTCCCGTGT GTTACCGCAC GC [-GG] TTGGC
Lepa-? GAGTGCGGGA CGGAAGCTGG TCTCCCGTGT GTTACCGCAC GC [-GG] TTGGC
LOXY-ITS CAAAATCTGA GCTGAGGATG CTGGGAGCGT CCCGACATGC GGTGGTGATC
Lepa-ITS CAAAATCTGA GCTGAGGATG CTGGGAGCGT CCCGACATGC GGTGGTGATC
Lepa-? CAAAATCTGA GCTGAGGATG CTGGGAGCGT CCCGACATGC GGTGGTGATC
LOXY-ITS TAAAGCCTCT TCATATTGCC GGTCGCTCCT GTCCGTAAGC TCTCGTTGAC
Lepa-ITS TAAAGCCTCT TCATATTGCC GGTCGCTCCT GTCCGTAAGC TCTCGTCGAC
Lepa-? TAAAGCCTCT TCATATTGCC GGTCGCTCCT GTCCGTAAGC TCTCGTCGAC
LOXY-ITS CCAATGTCCT CAAA
Lepa-ITS CCAATGTCCT CAAA
Lepa-? CCAATGTCCT CAAA
```

Supplemental Figure S2. ITS sequence comparison between *Lepidium oxytrichum*, *Lepidium papillosum* and the *Lepidium* accession "Mummenhoff 2415" (Lepa-?) used in this work, confirming that this accession is *Lepidium papillosum*. Positions in [] indicate ambiguous alignment in the total alignment of the genus *Lepidium*. Small letters mean only one strand was sequenced, capital letters mean both strand were sequenced, positions with sequence differences are in bold, and Lepa-? nucleotide positions identical to the Lepa-ITS are underlined.

Supplemental Figure S3. Plasmid Map of modified pDEST15 vector containing a TEV cleavage site used for recombinant GST-LesaDOG1 fusion protein expression. Predicted molecular masses of native GST and LesaDOG1 proteins are shown on the inside, predicted masses of GST* and LesaDOG1* proteins resulting from TEV cleavage of the fusion protein are shown on the outside of the plasmid map. GST-Linker(TEV)-LesaDOG1 is encoded as a continuous ORF on the plasmid. Numbers on plasmid: bp.

Supplemental Figure S4

Supplemental Figure S4. Recombinant GST-LesaDOG1 fusion protein expression and purification. A, Coomassie stained SDS-PAGE gel showing the IPTG induced expression of the 61 kDa GST-LesaDOG1 fusion protein (arrow) in E. coli. Samples of the growing bacterial culture were taken at indicated timepoints, heated in SDS-loading buffer and directly used in SDS-PAGE. B, Coomassie stained SDS-PAGE gel showing successive fractions of second round of protein purification process (see methods for details). 1) eluted protein fraction of first purification round after dialysis; 2) matrix bound proteins after incubation of fraction 1 with Glutathion-Sepharose matrix overnight at 4 °C; 3) unbound protein; 4 -7) wash fractions, unbound protein; 8) matrix bound protein after washes; 9) matrix bound protein after TEV cleavage; 10) unbound protein after TEV cleavage; 11 -13) wash fractions, unbound protein; 14) matrix bound protein after washes. Note: a large amount of GST-LesaDOG1 binds to matrix (2) whilst a small amount is not bound (3) and subsequently washed away (4-7); the matrix bound GST-LesaDOG1 (8) is efficiently proteolytically cleaved at its TEV recognition site resulting in LesaDOG1* appearing at ca. 37 kD and GST* at 25 kD (compare Supplemental Fig. S3) only leaving a small amount of uncut GST-LesaDOG1 (9); relatively pure LesaDOG1* is present in the unbound fractions (10-13) while GST* remains bound to the membrane (14); Fraction 10 was used in western experiments in Figs. 6 and 7 as a control and is referred to as 'DOG1'. Note the remaining presence of GST-LesaDOG1 and free GST* as detected by anti-GST antibody (Fig.6C) in fraction 10, which is hardly visible in the Coomassie stain. M, molecular mass marker.

Supplemental Table S1 Putative *DOG1* orthologs cloned from diverse *Lepidium* species.

<i>Lepidium</i> species	GenBank accession number	Sequence type [Gene name used in text]	Size (bp)	Primer pair ^d	Sequence similarity (%) to LesaDOG1 ^a	Accession number	Origin
L. campestre	JX512181	genomic	1146	В	72.0	OSBU 96-0070-30-00	Greece, Thrace, Nomos Evrou, Korimvos
L. africanum ^c	JX512177	genomic	1323	В	66.3	OSBU 22265	Australia, Melbourne, Royal Park, south of Park Street; coll. N. Scarlett
L. pseudohyssopifolium ^c	JX512179	genomic	1152	В	66.6	OSBU 22263	Australia Victoria, Mitre Rock, near Mt. Arapiles; 141°50`E 36°44`S; coll. N. H. Scarlett
L. ruderale ^c	JX512180	genomic	1369	В	64.1	OSBU 05-0209-10-00	East Kazakhstan, Zaissan distr., Akzhan; coll. Antonyuk
L. bonariense ^c	JX512178	genomic	1238	В	71.8	OSBU 95-0022-10-00	Australia, NSW, Broken Hill; coll. H. Hurka
L. papillosum	JX512183	genomic [<i>LepaDOG1a</i>]	1343	A ^e	85.0	Mummenhoff 2415	Australia, NSW, 10 km west of Broken Hill
L. papillosum	JX512187	mRNA [<i>LepaDOG1a</i>]	442	Е	100.0	Mummenhoff 2415	dito
L. papillosum	JX512184	genomic [<i>LepaDOG1b</i>]	1317	B ^e	73.5	Mummenhoff 2415	dito
L. papillosum	JX512185	genomic [<i>LepaDOG1c</i>]	1583	C ^e	65.6	Mummenhoff 2415	dito
L. papillosum	JX512188	mRNA [<i>LepaDOG1c</i>]	386	F	90.4	Mummenhoff 2415	dito
L. papillosum	JX512186	genomic [<i>LepaDOG1d</i>]	832	D	43.6	Mummenhoff 2415	dito
L. didymum	JX512176	genomic	1216	В	74.0	OSBU 22266	Germany, Osnabrück, near City Hall; coll. K. Sperber
L. leptopetalum ^b	JX512182	genomic	279	С	87.5	OSBU 22264	Australia, Victoria, near Carwarp; 142°06`E 34°38`S, coll. A.H. Brown

^a Cloned genomic fragments have been aligned against genomic *LesaDOG1* sequence; cloned cDNA sequences have been aligned against *LesaDOG1* cDNA sequence. Similarity is the % pairwise identity within the aligned region. Global alignment was performed using MUSCLE. All genomic fragments cover at least partially exon 1 and exon 2 including the whole intron.

^b This genomic fragment only covers exon 1.

^c For these species also another smaller genomic fragment covering only exon 1 was cloned, which is not identical to the listed larger genomic fragment; this indicates the presence of multiple *DOG1* genes in these species.

^d Primer pair abbreviations refer to supplemental Table S2.

^e These primer pairs were used for the initial cloning of *L. papillosum DOG1* gDNA fragments. To extend these sequences primers were designed based on an alignment of these gDNA sequences at highly divergent regions to obtain specific genomic fragments of the individual *L. papillosum DOG1* genes. Consensus sequences of these genomic fragments were derived for each *L. papillosum DOG1* gene.

Supplemental Table S2.	Primer sequences used for cloning of Lepidium DOG1 gene sequences and primer pair combinations (indicated by a common
letter) as used in Suppleme	ental Table S1.

Primer name	Primer Sequence (5'-3')	Primer pair combination
1-exFP1-DOG1	ACCAAGAGTGGATGAATTTGC	С
1-exFP2-DOG1	CGCGTACCTGATCTCAAACA	В
2-exRP2-DOG1	CGGCGACGATCTCTCATAGT	A, B, D
viPCR-FP2	ACCGGATTCGACATTATACCA	D
iPCR-RP2	CAAACCATCGATGTCACGAA	С
LoxyDOG1a FP2	TTATGCGCCGTCTTGGAACA	Е
LoxyDOG1a RP2	GCAAGAAATTGGCCGCTTCG	Е
LoxyDOG1b FP1	TTACGCCGGAAGAAGAGCTG	F
LoxyDOG1b RP1	TGCTTGTCGAGAGCTTGGTC	F
viPCR-FP1	CCAAAACACAAAACACAGCA	А
LesaDOG1a-FP3-wgDNA	TATGTATTTTAGAAAAATGGGATCTTC	
LesaDOG1-FP1-GW	GAAGGAGATAGAACCATGGGATCTTCAAAGAAGAACATCG	
LesaDOG1-RP1-GW	CTATTGCTTCTTCTCCTCCTCTCCTTTGG	
GSP-3	AGCCACAAAAGCATAAACGA	